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INTRODUCTION MD REVIEW OF PREVIOUS WORK 

From an economical, as well as a practical, standpoint it is some­

times better to have an antenna composed of many small elements rather 

than one large antenna. The effective aperture of an antenna increases 

with the diameter, and the cost for doubling the diameter is far more than 

twice the cost of the smaller antenna [l]. Serious problems arise in 

controlling the surface geometry of a large antenna because of; l) chang­

ing gravitational forces as the antenna is moved and 2) wind forces on 

the antenna. 

The antenna array can have as good (or better) resolution and effective 

aperture area as a large antenna but does not have as many problems with 

gravitational and wind forces. The direction of the main beam of the 

array can be "steered" by appropriately controlling the phases of the 

currents in the cables that feed the array elements. However, the cost 

of the phased array may be large because electrically controlled phase 

shifters are expensive and the array may require one or more phase 

shifters per antenna element. 

If the main beam is not required to be shifted in direction, the 

cost of the array may be much less than the cost of one single antenna 

that has the same radiation pattern as the array. 

Until Una's [2] paper in I960 all published work on antenna arrays 

dealt with equally spaced elements. The beamwidth and sidelobe level of 

the array were altered by varying the amplitudes and phases of the 

currents fed to the antenna elements. 

One of the common procedures for determining the amplitude factors 
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of a uniformly spaced array is the Dolph-Chebyshev method [3, pp. 93-

109]• The amplitudes are selected from the coefficients of a Chebyshev 

polynomial. Since some of the signal is dissipated in the attenuators 

that control the amplitude factors, additional antenna elements may need 

to be added to the original array to meet the gain requirements for the 

antenna. Instead of attenuators, amplifiers with various gains can be 

used to control the amplitudes, but increased problems with cost and 

stability are introduced. 

The first published report (1961) that gave results of calculated 

patterns of nonuniformly spaced arrays was by King, Packard and Thomas 

[4]. By calculating antenna patterns for various preassigned element 

spacings, they demonstrated that the sidelobes can be reduced by spacing 

the elements unequally. This is a more efficient method than adjusting 

the amplitudes. Their sample array showed that grating lobes could be 

eliminated and that the beamwidth was nearly the same as for a uniformly 

spaced array of the same length. They found that monotonically increasing 

spacing usually gave the best patterns but did not show that it was a 

basic requirement. 

In his first attempt to synthesize the spacings of a nonuniformly 

spaced array, Unz [2] used the Jacobi expansion to express the exponential 

phase factor as a sum of Bessel functions. The array factor F(0) was then 

00 ^ L 
F(e) = E  e*'"® E A. J (kx.) 

n= -co i=0 1 1 

where 0 is the angle measured from broadside, x^ is the position of the 

ith radiator, A^ is an amplitude factor, and J^(kx^) is an nth order 
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Bessel function. He set 

1=0 

and F ( 8 ) "became 

jne F(9) = i; f e 
n= -00 

If F(8) were given, it could be expanded in a complex Fourier series with 

coefficients f^. Then these coefficients are equated to the series of 

Bessel functions. No results of the procedure were given and Lo and Lee 

[5] later indicated that it is very difficult to get useful numerical 

results from this technique. 

To study arrays with spacings larger than one wavelength, Unz [6] 

extended his previous theory by expanding the Bessel functions in an 

asymptotic series. Only the first term of the expansion was necessary 

if |k%_|>>^n^. From his analytical results he concluded that any arbitrary 

radiation pattern could not be approximated by an array with elements 

spaced at an average distance of four or more wavelengths. 

In another short extension of his first paper, Unz [%] developed a 

magnetic field expression in the Fresnel zone for a nonuniformly spaced 

dipole array. The Fresnel zone pattern was expanded in terms of 

Gegenbauer polynomials and each coefficient in the expansion was a series 

of Bessel functions evaluated at the element positions. It was pointed 

out that the far field pattern can be found from the Fresnel region 

pattern by letting the distance from the array to the field point become 

infinitely large. 
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Fourier transform theory vas applied to the synthesis problem by 

Butler and Unz [8]. The aperture was assumed to be infinite so that the 

limits on the integrals would be infinite. It would seem that a large 

error might be incurred, but no error analysis was performed and no 

example was shown to verify their assumptions. Nonuniform element 

amplitudes were required for an array to meet the design criteria and 

this could limit the theory's usefulness. No method was presented- for 

finding the element spacing but if some spacing function were assumed, 

the amplitudes of the elements could be found. 

In another effort by Butler and Unz [9] the array factor was written 

in terms of power in the region of the main beam. This power expression, 

in terms of matrix theory, was maximized and formulas were derived for 

finding the current distribution for a specified array function, but no 

technique was shown for finding the element spacings. An analytic 

expression was derived for the amplitudes if the elements were uniformly 

spaced, but no example was included that showed the quality of the design. 

Unz [10] has also suggested creating an orthogonal set of functions 

from the terms in the array factor. The desired pattern function would 

be expanded in terms of the orthogonal functions and a set of equations 

would be found for the amplitudes of the array terms. However, if the 

element spacings were to be found for given amplitudes, say unity, a 

solution would be very difficult to find. Each element position would 

be tied up in a large number of trigonometric arguments. No examples 

were included nor was there any evidence that any design was attempted. 

Another orthogonalization method by Unz [ll] put a constraint on 
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the argument of the pattern function so that {cos ux^} became a set of 

orthogonal functions. The function u is ïïsinG, and is the position 

of the ith radiator in half wavelengths. The condition that had to be 

satisfied was 

(x^7r)tan(x^7r) = (x^7r)tan(x^7r}. 

If one position were specified all other positions were determined. How­

ever, no method was shown for choosing an initial position to take ad­

vantage of the benefits of the nonuniformity of the element spacing. The 

distance between the adjacent elements given by the above formula was 

less than one wavelength. 

If a pattern function to be synthesized were given, the only variables 

to be determined are the current amplitudes in each element. Consequently, 

for an array with a small sidelobe specification, the amplitude factors 

for a number of the elements would be small and the array would have low 

efficiency. However, if the additional gain were not needed, and the 

resolution is of primary concern, the array efficiency is not critical 

and the main loss is that of the additional hardware required to produce 

the correct amplitude distribution. No examples were presented in this 

article. 

Sandler [l2] expressed the nonuniformly spaced array as an equivalent 

uniformly spaced array (EUA). This was accomplished by expanding each 

cosine term in the array factor of the nonuniformly spaced array in a 

Fourier series. The individual expansions were then added term by term. 

The coefficients of the EUA were chosen to produce the desired array 

pattern by methods already developed for uniformly spaced arrays. These 
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known coefficients were related to the element positions and were determined 

by a solution of simultaneous transcendental equations. Several of the 

equations are shown below: 

sinp^ IT siny^ir sinu-ir 
A = — + — + ^ + ... 
O p^TT Wgir PgTT 

2p^siny^ïï ZlpgSinpgn 

* w(w2-l2) * %(w2_i2) 

2p^siny^TV EpgSinpg? Ep^sinp^n 

^ 7r(Pi-2^) 

2dm 
where the A's are the amplitude coefficients of the EUA, p = —, d is 

m R m 

the element spacing in wavelengths, and R is a scale factor. It is diffi­

cult to solve for the p's from this set of equations and no attempt was 

made to design an array by this procedure. The expressions were used for 

a general discussion of the behavior of array patterns. 

The feed system for the University of Illinois radio telescope was a 

nonuniformly spaced array designed by Swenson and Lo [13]. The desired 

pattern was the same as for a uniformly spaced array with a cosine-

squared illumination function. The spacing function 

y(x) = — sin — + x 
TT 3. 

for the nonuniformly spaced array with uniform illumination was obtained 

by integrating the original cosine-squared illumination function with the 

boundary conditions y(0) = 0 and'y(a) = a. The aperture size is a, and 

the element position is x in wavelengths. Spacings were found by choosing 
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a set of equally spaced y's and solving for the x's. The element spacing 

for the latter half of the array varied from 2/3 wavelength to 19 wave­

lengths with an average spacing of 1.85 wavelengths in this portion. In 

the first half of the array y was conveniently set equal to x. 

By nonuniformly spacing the elements, only 2j6  of them were required 

instead of the 400 which are necessary for the same pattern if the 

elements were uniformly spaced with equal amplitudes. The pattern con­

tained 206 sidelohes in a 0 to 90° region. For most of this region the 

sidelobes were below 0.032 and only exceeded this amount at a large 

distance from the main beam. The half-power beamwidth was 19 minutes 

of arc. 

Lo [l4] and Bruce and Unz [15] have both reported on a mechanical 

quadrature procedure. In Lo's method the Legendre-Gaussian quadrature 

was used. The element spacing was given by x^ as follows: 

X. 
/ f(x) dx = b(z. + l)/2 
-a/2 ^ 

where is the ith root of the Legendre polynomial of degree 2N (the 

total number of elements), a is the total aperture dimension in wave-

a/2 
lengths, and b is defined by J f(x) dx = b. The magnitude of the 

o 

aperture distribution f(x) is not determined by this method and one must 

assume a distribution function to obtain the element spacing. An 80 

element example was presented with a = 132 wavelengths. The following 

aperture distribution was assumed: 

2 
f(x) = COS ïïx/a for |x|£a/2 

= 0 otherwise. 
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The beamwidth vas approximately 0.57° and the sidelobes were very low 

near the main beam but increased to about 0.3 near the outer region. 

The pattern allowed a 90° scan angle under these conditions. 

If a uniformly spaced array pattern has already been calculated, 

Harrington's [l6] perturbation method can be applied on a lobe-by-lobe 

basis to. reduce the level of the sidelobes. The perturbation was 

introduced by letting the element spacing be e away from uniform spacing. 

Analytically this was expressed as 

If e^u were small compared to one, the normalized field pattern 

reduced to 

3 = 2% - R- a Si* sg: . 

where u = ̂  d sin0 aiid is the pattern of a uniformly spaced array 

with element separation d. The previous equation was rearranged to give 

E sin n|' = I (E^ -'E) . 

The e^'s are then given by the formula for Fourier coefficients. 

However, the approximation is restricted to small e^u. The method works 

effectively when applied to lobes near the main beam. The lobe nearest 

the main beam was reduced from 0.2 to 0.1 on a normalized basis for a 

12-element array. Reduction of the lobes near the main beam caused the 

lobes in the outer region to increase. In the 12-element array example, 

the outer lobes increased to 0.U8 whereas a uniformly spaced array of 

12 elements has a maximum sidelobe level of 0.22 except when a grating 

lobe occurs. - Andreasen [IT] pointed out that Harrington's technique is 

only effective if the average element spacing is less than about one-half 
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wavelength. Under these conditions a uniformly spaced array would have 

no grating lobes. 

Andreason [IT] chose an initial array with preassigned positions and 

used a digital computer to calculate the sidelobe level. The position of 

one element was changed by the computer until a position was found that 

gave the lowest sidelobe level. When this position was found, the 

computer repeated the process for the next element in the array, and so 

forth. After all elements, except the center element, had been reposi­

tioned, the entire procedure was repeated. This process continued until 

the sidelobe level was below a certain number. It was found that no more 

than four complete loops were needed to arrive at the best array. 

Arrays were designed with 11, 21, and 51 elements with an average 

spacing between adjacent elements of 2 to 3 wavelengths. The best side­

lobe levels were 0.558» 0.37^ and 0.3 for the 11j 21, and 51 element 

arrays respectively. Andreason tabulated parameters for equal-spaced 

Dolph-Chebyshev arrays with the same pattern data as the nonuniformly 

spaced arrays and in every case the required number of elements was less 

for the latter arrays, almost by a factor of two. Of course, with fewer 

elements the gain could not be as high as for the uniformly spaced array. 

Maffett [l8] formulated the problem as a continuous source distribu­

tion and integrated over the source aperture to give the array function. 

From the current density, a cumulative current distribution function was 

formed that incorporated the element positions. The integral was changed • 

to a summation by applying the trapezoidal rule and dividing the interval 

into N spaces. The result was interpreted as an array factor of a 
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(2N+l)-element symmetric array. 

An example was presented for 51 elements in which the cumulative 

current distribution was chosen. The spacing between adjacent elements 

was on the order of one wavelength. The sidelobe nearest the origin was 

about 0.06 in magnitude. The lobes steadily increased in magnitude to 

about 0.35 at sin'6= 1. A variable u was defined as sin 9 - sin6 , where 
o 

0^ is the angle to which the beam is steered. For the range 0 <_ u _< 2 

the maximum sidelobe level was about 0.4 for the 51-element array and the 

beamwidth at the half power points was 0.01 in units of u. 

Baklanov e^ al. [19] attempted to make all sidelobe levels equal by 

setting the derivative of the array factor equal to zero to find the 

critical points and then equating the array factor to a constant at these 

critical points. This gave a set of simultaneous transcendental equations 

to solve. Since this was so difficult they avoided a direct solution and 

developed a system of quasilinear first-order differential equations by 

adding a differential value to each variable. 

Various 8- and 17-element arrays were designed by solving their 

differential equations with a complicated numerical technique. The 

resulting patterns were quite good and had very nearly equal sidelobes 

that remained low. However, some of the elements were spaced as closely 

as 0.3 wavelength. This close spacing would cause strong mutual coupling 

that would change the pattern noticeably. 

An "optimum" solution was shown by Brown [20] for 4- and 5-element 

arrays. No rigorous proof that the solution was optimum was given, but 

the patterns compared favorably with Chebyshev arrays of comparable size. 
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The symmetrical 4-element array factor was written as 

E = cos k̂ (f) + cos kg({) 

where (}) = sin Q and = 2irx̂ /X. The two unknowns k̂  and kg were determined 

by specifying the levels of the first two sidelohes. The ratio of k^ to 

kg determined the value of the -first sidelobe and the second sidelobe 

was chosen to equal the first at (j) = 1. Thus both sidelobes had the 

same value in the visible range. 

A comparison of derived results with a Chebyshev pattern showed very 

similar sidelobe levels, but the beamwidth of the Chebyshev pattern was 

16% smaller. The first zero crossing of the nonuniformly spaced array 

was at (j) = sin 0 = 0.6 and with this wide beamwidth only 2 sidelobes 

occured in the visible region (-ir/2 £ 0 £ IT/2). 

Ma [21] commented on Brown's [20] procedure to say that there was a 

special case of perturbâtional methods available for generalizing his 

results. A brief reiteration of the analysis of Baklanov al. [19] was 

included and Ma continued with a slight modification which increased the 

spacing between adjacent elements of Brown's array. The perturbation 

started from a known equispaced uniform array. An example of an 8-element 

array was included that nicely illustrated the improved pattern. • However, 

the increased spacings were still in the neighborhood of 0.5 to 0.8 wave­

length. The sidelobe level was -17.22 dB or 0.138. 

The effect of mutual coupling in nonuniformly spaced arrays was 

investigated by Allen and Delaney [22]. Theoretical and experimental 

studies were conducted on a nonuniformly spaced l6-element array. The 

spacing between adjacent elements varied from 0.5 wavelength to 1.051 
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wavelengths. The spacing was closest at the center and increased 

monotonically outward. The elements were dipoles placed one-quarter 

wavelength above a ground plane. The pattern was calculated by neglect­

ing mutual coupling and then was compared to the experimental pattern. 

The first few sidelobe levels were 8 to 10 dB above the predicted levels 

in the absence of mutual coupling. To verify that mutual coupling was 

the cause of the discrepancey, the pattern was calculated as well as 

possible with the effects of mutual coupling included. Allen and Delany 

concluded that the agreement between this pattern and the experimental 

pattern was not excellent but the difference was in the proper direction. 

They conjectured that the remaining error was due to dipoles that were 

not as thin as they had assumed theoretically. 

Ishimaru [23] converted the general term of the nonuniformly-spaced-

array factor into an equivalent continuous source distribution by using 

the Poisson sum formula and introducing a "source distribution function". 

The latter gave the position of the nth element in the array when the 

variable in the function was set equal to n. The source distribution 

function was assumed to be 

Ai 1 
y(x) = X + 2 — sin TTX . < — 

which allowed the pattern function in his formulation to be expressed in 

terms of Anger functions. This spacing function has the same form as the 

one used earlier by Swenson and Lo [13] . Approximations were made to 

keep the mathematics manageable but they also caused the sidelobes to 

increase as the position from the main beam increased. In an example 

of a 20-element array, the sidelobes increased from 0.06 near the main 
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beam to about 0.22 at 90° from the main beam. The average element spacing 

was about O.J wavelength. When the average spacing was increased to about 

1.2 wavelengths, the sidelobe level degenerated to about 0.4$. 

To find the element positions, tables of Anger functions were used 

in reverse to find the order and argument of the function for a specified 

array function behavior in the sidelobe region. This determined a value 

for and the number of elements N. y was set equal to n/N and values 

of X were found by a computer. 

Ishimaru and Chen [2^] extended the theory and presented a brief 

study of the Anger function and, in particular, investigated the influence 

on array parameters by the relationship between the order and the argument. 

An approximate relationship was found for the maximum sidelobe level and 

a detailed analysis was made of the gain. 

A geometrical representation of the array factor was derived by Yen 

and Chow [25]. The sum of exponential terms (the array factor) was added 

geometrically and an integral expression for the factor was then deduced. • 

Two types of zones of the array pattern were considered. A region of very 

low sidelobes was called a destructive zone and a region of higher side-

lobes was called a stationary phase zone. It was shown analytically and 

by an 80-element example that for an exponentially spaced array the side-

lobes were almost constant in amplitude in the stationary phase zones. 

The sidelobe level in the stationary phase zones varied from about .0.25 

in one zone to 0.3 in another zone for the 80-element example. The main 

beam was very narrow and the sidelobes remained in the predicted regions 

for a large angular excursion. 
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In a second paper Chow [26] considered the previous plateaux problem 

by Yen and Chow [25] in reverse. He showed that in order to have low 

flat grating lobes the element spacing should be in exponential form. 

His procedure was to change the array factor to an integral expression by 

using Poisson's s'^m formula in the same manner as Ishimaru [23]. To 

create the stationary phase condition, the phase factor in the integrand 

was set equal to a constant. The results agreed with the previous work 

of Yen and Chow [25]. Relationships were found for arrays with noniso-

tropic elements and an example of a synthesis problem was included where 

the amplitude factors of the elements were specified. 

Results of Yen and Chow [25] and Chow [26] were extended in Chow and 

Yen [27] to planar arrays. The elements were located on a lattice 

derivable from a conformai mapping of a uniform lattice. The derived 

array had exponential element spacings very similax to those of the 

linear exponentially spaced array discussed in their previous papers. 

A graphical solution was reported by Brieout [28]. The array factor 

was written in the form 

W 
E = 2 Z cos a.i|; 

i=l ^ _ 

where ip = (2TrL/X)sin 0, L is the half length of the array and a^ = x^/L. 

The function was differentiated and set equal to zero to give 

N 
Z (a.^) sin (a.^) = 0 . 
i=l ^ ^ 

A curve was drawn of the function f(x) = x sin x and a drawing of a 

scale was included that was to be transfered to a transparent slide. The . 
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slide scale contained values of f(x) and when used in conjunction with 

a proportion scale f(x) could be read for any x. A root was found by 

adding values of f(x) corresponding to the a^ on a trial and error basis 

to detect a sum of zero. Once the root was found the transparency did 

not have to be moved to find the amplitude of a sidelobe at that value 

of X. An additional scale was provided for this. 

Consideration was also given to arrays with amplitudes varying as 

the cosine function and all examples were for this configuration. 

A method for designing a planar nonuniformly spaced array was pro­

posed by Neustadter [29]. A second moment sum (SMS) was calculated for 

a predesigned amplitude-tapered array and equated to an SMS for a non­

uniformly spaced array. Each term of the SMS was the product of the 

amplitude of that element and the distance squared from that element to 

a principal axis. There was an SMS for the x axis and an SMS for the y 

axis. The second moment sums were equated for only one small segment of 

each array at a time. 

An example was included for a 35 dB Taylor taper 397 element array. 

The designed space-tapered array consisted of 217 elements of which 91 

elements had unity amplitude and 126 elements had an amplitude of 0.599. 

The amplitude-tapered array had a gain of 1.46 times the gain of the 

space-tapered array but the latter required 45% fewer elements. 

The technique of dynamic programming was used for array design by 

Skolnik ̂  [30]. The process was accomplished on an element-by-

element basis. The element positions were quantized and the outer pair 

of elements were fixed at the desired aperture size. The first element 
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location was chosen anywhere in the aperture region and the second element 

was chosen similarly. For every position of the second element there was 

a "best choice" position for the first element to keep the sidelobes low. 

When the best second element position was found by trial and error, and 

consequently the best first element position, a third element was intro­

duced. The second and third element positions were varied in the quantized 

positions until a "best choice" was found for the third element and for 

the second element. Since calculations already had been made on the best 

first element position for every second element position, the first 

element position was known. This process was repeated for each element 

in the array. This trial-and-error procedure required fewer computations 

than trying all possible combinations since consecutive element positions 

were taken two at a time, and once these positions were determined all 

previous element positions were determined. 

Examples were included for 9- and 25-element arrays. The sidelobe 

level for a 9-elemént, 19X aperture was dB (O.582). This design 

allowed a 90® beam scan. It was found that as the quantizing increments 

became smaller, the sidelobe level was reduced. However, for increments 

less than 0.5A, the improvement was small. 

Marinos [31] operated with the array factor in terms of power rather 

than a field quantity. The excitation current i was broken into real and 

imaginary parts and for a broadside array the power pattern was 

^ 2 & P 
P(w) =[/ i (z) cos zw dz] + [J i.(z) cos zw dz] 

-Z -Z ^ 

where z = 2x/X, x is the element position along the array axis, w = ircos0. 
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6 is an angle referenced to the array axis and +.£ are the aperture limits 

+L expressed in half wavelengths. 

Three requirements had to be satisfied for the power function to be 

synthesized by this method. One requirement was that the function had 

2 2 
to be separable into two positive functions G^(w) and G^fw) such that 

2 2 
P(w) = G^(w) + Ggfw). By using Fourier transform theory the currents 

could be written in terms of the G's. A P(w) that met all requirements 

was selected by trial and error and integrated in the transform expressions 

to get the real and imaginary values of the currents. Since these currents 

were continuous functions, and one is usually interested in discrete 

.arrays, a Gaussian integration formula was used to convert the continuous 

array expressed in integral form to a summation form. 

Results were given for ^ array designs. The design results were 

generally very close to the initially specified values. For a specified 

beamwidth of 40° and a sidelobe level of 20 dB (O.l), the design results 

were and 19.6 dB. The element positions varied from a separation of 

0.4 wavelength to 0.7 wavelength for a 6-element array. The excitations 

were l.o/o^, 0.737/2.5°, and 0.222 1-6 .2° .  

Barclay and Marinos [32] formulated the array factor initially in an 

integral form with a current amplitude distribution and an exponential 

phase factor so that the expression resembled the Fourier transform. 

However, the field expression was used rather than the power expression 

used by Marinos [31]. The current was broken into real and imaginary 

parts that were even functions so the array integral reduced to the Fourier 

cosine transform. The'inverse transform was taken which produced real and 
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imaginary expressions for the currents in terms of the radiation pattern. 

Gaussian quadrature techniques were then applied to change the continuous 

integral expressions to summations of discrete values. 

The element spacings were not synthesized but were chosen to corres­

pond to the zeros of a Legendre polynomial of order equal to the number 

of antennas. A field expresion was hypothesized that had a number of 

general parameters for producing whatever pattern one desired. The 

general form of the expression was a cosine function times a decaying 

exponential factor which controlled the sidelobe levels. 

The quantities determined from this procedure were the current 

amplitudes of the array elements. Two included examples were an 8- and a 

13-element array. The element spacings were on the order of 0.5 wave­

length to 0.7 wavelength. The current excitations were complex, with 

values varying from 0.01 to 0.22 for the 8-element array. The sidelobes 

stayed below 0.1 for a typical l80° visible region and the half-power 

beamwidth taken from .a plot of the 8-element array was about l6°. 

An energy minimization technique in the sidelobe region was demon­

strated by Galejs [33]. The element.spacing d^ was assumed to be a 

quartic function of n. The sidelobe energy was minimized by adjusting 

each coefficient of the quartic equation independently (no minimization 

attempt was made by adjusting all coefficients simultaneously). The 

pattern of a 24-element array was similar to those of other techniques 

where the sidelobes were low near the main beam but increased markedly 

farther away. 

Tang [SU] introduced a method that utilized the pattern function of 
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a previously designed uniformly spaced array with tapered amplitudes. The 

pattern functions of the uniformly and nonuniformly spaced arrays were 

each expressed in terms of a pattern of a continuous source distribution 

with piecewise uniform excitations. These pattern expressions were 

equated, which put a constraint on the element positions of the non­

uniformly spaced array. By minimizing the difference in patterns near 

the main beam a simple expression for finding the element positions was 

obtained. Results of examples were included for designs from two Chebyshev 

amplitude tapered uniformly spaced arrays. The sidelobes near the main 

beam were low but increased greatly near the outer regions of the pattern. 

For a lO-element array the average element spacing was 1.075 wavelengths, 

the sidelobe level near 6=0° was 0.0^7, near 9 = 90° was 0.k26, and 

the beamwidth was $.4°. 

Tang [35] continued his array study by comparing his previously 

selected array with an amplitude tapered array to show that nonuniformly 

spaced arrays must be thinned at the ends to have better sidelobe levels 

than those of a uniformly spaced array, or thinned at the center to 

produce worse sidelobe levels. Taylor's [36] line source distribution 

was used as the reference for a continuous array. 

In a third paper Tang [37] presented numerical results on the beam-

width and the operating region of the arrays he discussed previously. 

For a gb-element array with a 15 dB (O.I78) sidelobe level and a 70 wave­

length aperture, the beamwidth was O.56' and the operating region was 

23.9°. The operating region was defined as the region in which the side­

lobe level stayed below the design level. 
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To complete Tang's study on the methods he previously introduced on 

nonuniform array design, Tang axid Chang [38] considered the problem of 

optimizing the array gain. The gain was varied by adjusting the amplitude 

of each element. Several graphs showed the effect on gain by changing 

the number of elements and the design sidelobe level. This information 

could be used to design practical nonuniformly spaced antenna arrays. 

Tang [39] gave a general discussion of the array problem from an 

approximation viewpoint and concluded that the problem required an entirely 

new effort. To restrict the infinite number of possible antenna arrays, 

he suggested quantizing the spacing and then formulated an expression 

for the total number of possible arrays for his quantization method. The 

optimum solution was to be found by calculating the pattern of each 

possible array. ' 

Lo and Lee [40] presented a method of finding the secondary maxima 

of an array function if it contained only two terms representing four 

elements. The spacings were assumed to be an integral number of wave­

lengths. The maxima were found by minimizing the distance between the 

adjacent maxima of the two cosine terms. The details of the method of 

minimization were not explained in this paper, but reference was made to 

Hauptman and Karle [4l]. 

A second method suggested by Lo and Lee in the same report was to 

approximate the cosine functions by triangular functions since the linear ' 

portions of the function would reduce computing time. For the practical 

cases of interest they then stated that the "frequency" of the end elements 

was much higher than the other elements so the highest sidelobe must be 
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very near to one of the maxima (or minima) of this highest frequency 

component. An additional simplification was made by computing the 

pattern function over the maxima and the minima of the highest frequency 

component only. The element positions were quantized in half-wavelength 

steps and array patterns were calculated using the above approximations 

for all possible element positions in a specified aperture length. The 

last step in the procedure was to compute the exact sums of the array 

function at these locations. The approximated results were apparently 

within 1 dB of the true sidelobe levels so they felt that the approxima­

tions were fully justified for practical applications. 

Larson ̂  el. [i;2] formulated the nonuniformly spaced array problem 

when there is a variation in element size along the array as in a slotted 

waveguide. Parameters were defined and relationships between the 

variables were shown graphically, but no design technique was attempted. 

Graphs that were included showed how the grating lobe intensity changed 

with beam steering angle, fractional aperture size, and the degree of 

nonuniformity. The conclusion was that the use of unequal sized elements 

nonuniformly spaced could provide considerably increased beam-steering 

capability and smaller grating lobes. 

Ma [43] built a theory around Haar's theorem which states that under 

certain conditions a sum resembling the array factor can be uniquely 

determined to approximate a function, the given array pattern, in the 

best "Chebyshev sense". Conditions were given that described a "Chebyshev 

system." 

The process involved minimizing the error between the given function 
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and the array factor by an iterative technique. The first step was to 

pick an element spacing, then find values of the given function at n 

points (n equals the number of elements). The element amplitudes were 

selected according to the given function at the n points by solving a set 

of simultaneous equations. Using these values in the array factor, an 

error function was written as the difference between the given pattern 

function and the array factor. The derivative of the error function with 

respect to u = irsinO was set equal to zero to find n + 1 extreme, points 

of the initial error function. These n + 1 extrema points were used in 

the array factor with new unknown amplitude coefficients for the next 

iteration. A new error function was obtained by taking the difference 

of the desired function and the new array factor. The iterative procedure 

was repeated until the error function was equal in magnitude to a certain 

accuracy. The iterative process was proved to be convergent as long as 

the conditions for a Chebyshev system had been satisfied. Ma states that 

a serious limitation of this technique lies in how to choose the number 

of antennas and the element spacings so that a Chebyshev system is formed. 

Matrix theory was used in a very general manner by Cheng- and Tseng 

[44] to find an expression for an optimum value of a quantity in the sense 

of a maximum or minimum. In the latter half of their paper they applied 

their theory to maximize the gain of arbitrary arrays and an explicit 

expression was found for the optimum excitations of the elements. The 

only results shown were for the amplitudes of two 8-element uniformly 

spaced endfire arrays. 

A valuable paper in January I966 was Lo and Lee's [5] study of space-
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tapered arrays. The difficulty of the problem was emphasized by noting 

that if the element positions were subject to optimization, the problem 

becomes highly nonlinear and that the location of the highest sidelobe does 

not vary continuously with element positions. 

To compare the results of previous design techniques with what could 

be considered an "optimum" array in the sense of the least sidelobe level 

for a given number of elements and beamwidth, an exhaustive study was made 

of a few small arrays. The 9-element symmetric array received the most 

attention. A 19-5 wavelength aperture was considered with quantized 

element positions every quarter wavelength. With one element always at 

the center and a fixed element on either end, there were 7770 different 

ways of placing the remaining 6 elements with no two elements occupying the 

same position. Pattern functions were calculated for all of these cases 

in increments of 1/76 out of 1. The lowest sidelobe level obtained was 

0.5145 and the average element spacing was 4.75 wavelengths. ' Twenty-

three arrays out of the possible 7770 had sidelobe levels between 0.5 and 

0.6. From the 23 best arrays no conclusions could be drawn as to a method 

of element spacing since the positions varied so drastically among the 

arrays. However, looking at the 23 cases as a whole, it was observed 

that there were more elements closer to the center of the array than at 

the ends. • ' 

The best array was compared with results of authors mentioned 

previously to see how close to a true optimum solution the designs were. 

Skolnik et_ [30] considered a 9-element array in their dynamic pro­

gramming procedure. However, after calculating 648 cases the lowest 
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sidelobe level obtained was 0.583. The sidelobe level of a 9-element 

array pattern calculated with Ishimaru and Chen's procedure [24] was worse 

than 58^ of all the cases considered in Lo eind Lee's study. Another 

comparison was made with a design based on Chow's [24] technique. For 

both a 10-element array and a 26-element array. Chow's sidelobe levels 

were higher than the lowest levels found by Lo and Lee. 

Lo and Lee concluded that space-tapered arrays have a larger chance 

to produce low sidelobe levels than a non-tapered array, but many low 

level arrays are not space-tapered. 

Shih [45] reported on a synthesis method using the lambda function. 

To arrive at a lambda function expression, the Chebyshev-Gaussian 

quadrature and Hankel transform were .used. The element positions were not 

synthesized, but were spaced according to the zeros of a Chebyshev 

polynomial and the synthesis was applied to the amplitudes. To use the 

technique the desired pattern function must be expanded in terms of the 

lambda function. This expansion is difficult since the lambda functions 

do not form an orthogonal set over the desired interval. This problem 

was overcome by taking the Hankel transform of the desired pattern function 

and expanding the result in a power series. A relationship was then 

found for the coefficients of the lambda function expansion. 

An example problem was solved for a 12-element array. The assumed 

pattern function was of the Taylor [36] type and the sidelobe level was 

chosen as 0.1. The synthesized pattern compared very favorably with the 

prescribed pattern. The amplitude ratios were quite severe and would 

be a decisive argument for not using such a technique. The amplitude 
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ratio vas smallest at the end (0.05 out of l.O) and increased to 1.0 at 

the center. 

In a technique presented hy Strait and Cheng [46], small variations 

from the uniformly spaced array were represented by amplitude factors. 

If the element amplitudes were unity the array factor for an even number 

of elements N is 

2 2i T 
E = I" E cos[^ + A.]4 

^ 1=1 • 1 

where 

^ sine 
X • 

d = nominal interelement spacing 

= spatial variation from uniform spacing 

For small A. the authors show that 
i 

P N/2 , 2A.  ,  ,  
E — D {cos(2i-l)^+ —^[cos(2i+l)^ - cos(2i-3)|-]} . 

^ i=l ^ ÏÏ , . ^ 

The usefulness of this equation arises from the A^ appearing only as an 

amplitude variation and not as a spatial variation. The above expression 

was equated to a Dolph-Chebyshev array factor which was expressed as 

2 A 
T = f E A. cos(2i-l)§- . 

^.i=l' ^ 

The two array factors were matched as closely as possible by equating 

coefficients of similar cosine terms. A set of linear equations resulted 

that related the Dolph-Chebyshev amplitude coefficients to the variation 

in element spacing. 

An example was calculated for a l6-element array with a design 
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sidelobe level of 20 dB (O.l). The synthesized pattern had a sidelohe 

level very close to 20 dB and the half-power heamwidth was about 6°. The 

average element spacing was about 0.48 wavelengths. 

Meyer [4?] analyzed the problem by using the Fourier transform and 

associated theorems. The array factor was easily changed into integral 

form by placing the Dirac delta function 6(x-x^) in the integrand. The 

amplitude factor aind the spacing factor were each represented as the 

Fourier transform of another function. The complete array factor was 

then written as a convolution integral. After showing that the array 

factor could be represented by a number of other forms also, he demon­

strated the application of one of his formulas by choosing the same 

position function as Ishimaru and Cheng: 

X = y + sin Try , 

but no conclusions were drawn from this result other than to point out 

the similarity with a result of Ishimaru and Cheng. 

Additional manipulations were carried out with the end result being 

an expression for the array factor in terms of many multiple sums of 

Bessel functions. This method of pattern calculation appears far more 

complex than using the original summation form for the array factor. 

For completeness, the statistical approaches should be mentioned. 

However, they usually require several hundred elements and arrays of that 

size were not of interest at this time so reviews were not made. Designs 

based on statistical methods will be found in references [48] through [54].. 

An experiment by Lo and Simcoe [55] verified extremely well statistical 

results predicted earlier by Lo [52]. The experimental technique used was 
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the "holey-plate" method which has been described by Skolnik [56]. The 

antenna array was modeled with a conducting circular screen about $6 wave­

lengths in diameter perforated with small holes to simulate the antenna 

elements. Two sample planar arrays were constructed, each with 210 elements, 

and the diameter of each hole was about one quarter wavelength. The fre­

quency used was 71*25 GHz. The experiment showed that mutual coupling 

could be ignored if the average spacing were not too small. The agreement 

between measurement and the theory in sidelobe level, sidelobe distribution 

and half-power beamwidth was extremely good. 

In many of the papers presented previously, mathematical difficulties 

were encountered in the deterministic methods that made the calculation of 

element positions completely impractical, or approximations were made that 

would lead to less desirable array patterns. Some methods required an 

element-spacing function to be specified and only the element amplitudes 

were synthesized. Frequently no procedure was outlined for finding this 

element spacing function. In some instances no results were included, so 

evaluating the method was difficult. 

Before proceeding with the design technique presented in this thesis, 

the nomenclature used in array theory will be discussed. 
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PROBLEM DEFINITION 

The geometry of the linear antenna array to be considered in this 

thesis is shown in Fig. 1. The spacing "between adjacent elements in un­

equal but the array is assumed to be symmetrical about the origin. The 

elements are considered as isotropic radiators since the pattern for an 

array of similar directive elements is simply found as the product of the 

pattern function of an array of isotropic radiators and the pattern func­

tion of an individual pattern element [3, pp. 66-76]. The observation 

point is assumed to be a large distance from the array so that the radia­

tion is approximately in the form of plane waves whose directional rays 

are parallel along the path between the array and the field point of 

interest. The electric field has harmonic time dependence and can be 

expressed as E^cos(a)t-gr) where is a constant, w is the angular frequency, 

3=2TT/X, and r is the distance along the propagation path. 

-X 
n 
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The antenna pattern is caused by interference of the waves from 

individual antenna elements. The distance that determines the amount of 

interference is the difference between the propagation path length from 

an individual antenna element and the phase reference, which will be the 

origin. This distance for an element located at is x^sin 6, for an 

element at x^, x^sin 6, etc. The phase difference between an element at 

the origin and an element at x^ is gx^sin 6. For convenience the wave 

function is expressed in an exponential form and the time dependence is 

dropped. The phase relationship between the element at the origin and 

the element at x^ would then be 

For 2IÎ+1 elements the field pattern can be expressed as 

W 
E(6) .  A + E A (e-jexn 

n=l 

K 
= + 2 Z A cos(3x sin e) (l) 

n=l 

where A^ is the amplitude factor for the nth pair of elements. If the 

amplitude factors are identical, the expression reduces to 

N 

E(0)=A + 2 A E cos(3x sin 6) . (2) 
n=l 

Several simplifications can be made to permit easier manipulation. 

Let d^ = x^/X and v = 2TTsin 0. Then Equation.2 reduces to 

B 
E(V) = A + 2 A E cos d. V .  ^ '  

° n=l 

Dividing by the maximum value of E(v) reduces Equation 3 to a normalized 

expression F(v), which-is called the array factor: 
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F(v) = = [1 + 2 S cos d^v]/(2W+l) . (4) 

o n=l 

The synthesis problem of interest is to determine the 's when the 

array factor F(V) is specified. A solution for the d^'s when the number 

of antenna elements and the sidelohe level are specified is presented in 

this thesis. The magnitude of the sidelobes is of primary importance, but 

the functional variation in the sidelobe region is not significant- The 

cosine displacement design method presented in this thesis will be ex­

plained for an array of 5 elements which is sufficient to convey the 

basic design principles. Following the theory are design examples for 

5-, T- and 9-element arrays. The last section contains suggestions for 

extending the theory to larger arrays than previously discussed and to 

.arxays with nonisotropic elements. 

The design problem is more difficult than one may realize from a 

brief introduction. Well known optimization techniques, such as minimizing 

the meaji square error, are not applicable to this problem. The position of 

the highest sidelobe does not vary continuously with the element positions, 

and causes additional complications. A highly nonlinear problem is 

created when an attempt is made to determine the element positions by 

optimizing the array function. In addition, there is no particular "best" 

functional form to which the array function can be optimized for a 

practical solution. An impulse function provides the ideal directional-

properties, but would be completely impractical for array design since an 

extremely large number of elements would be required. • 

Another complication arises in introducing the design specifications 

1 
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into the problem since there is no closed function to which they can be 

applied. One has only the series of cosine functions to work with. Using 

this series, it is very difficult to obtain a workable relationship 

between the beamwidth or sidelobe level and the element positions. 
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THEORY OF COSINE DISPLACEMENT METHOD 

Theory of 5-Element- Arrays 

Consider an array of five (2N+1 = 5) elements. From Equation 4 the 

array factor is 

If high sidelohes are to be avoided, the peaks of the two cosine functions 

should never coincide at any point except v=0 within the range of v, which 

is - 2ir to + 2tt. Since the cosine is an even function, the range of v 

can be reduced to 0 to 2n. Fig. 2 shows a sketch of cos(Av) and COS(A+B)V 

with B not equal to A. 

F^(v) = •^(l + 2 cos d^v + 2 cos d^v) . (5) 

Let d^ = A and d^ = A+B yith B greater than zero. Then 

F^(v) = j[l + 2 cos Av + 2 cos(A+B)v] . ( 6 )  

COS(A+B)V V^ VJ^ cos Av 

1 

0 

-1 

Fig. 2. Cosine functions for an arbitrary ^-element array 
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The displacement between the two curves can be expressed as Bv which 

would be equivalent to a phase shift if the two cosine functions had equal 

periods. By controlling the displacement between adjacent peaks of the 

individual cosine functions, the magnitude.of the sidelobes can be 

regulated. The minimum points of the cosine functions will be referred 

to as negative peaks. One can observe in Fig. 2 that as v increases from 

zero, the displacement between the peaks increases. When (A+B)V exceeds 

Av by ir radians, the distance between two peaks starts to decrease, and 

as V continues to increase, the functions will coincide at some point 

where Bv=2n. Beyond this point the displacement cycle repeats. 

The curves can be prevented from coinciding within the range being 

considered, if the point of coincidence occurs for v greater than 2ÏÏ 

radians which means that B is less than one. 

Because of the cyclic properties of the displacement, the distance 

2IT- Bv^ between two curves is the same as Bv^. However, if the curve of 

COS(A+B)V is "leading" in the former case, it is "lagging" in the latter. 

The sum of cos(Av) and COS(A+B)V is relatively large near v^ since the 

two functions disperse beyond this point, and will be the largest sum in 

the region _< v £ 2TT if 

2-n - Bv^ = 2TrB , (7a) 

where 2TrB is the displacement at V=2ÏÏ. This equation requires the curves 

at V=2TT to be as far apart as the same curves at v=v^. In terms of 

degrees this says, for example, two curves an angular distance of 

apart at v^ are required to be 315° apart at v=2ir. 

Replacing v^ by n/(A+B) in Equation Ta and solving for A gives 
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- m }  • (Tb, 

This relationship must he satisfied if the two curves are not to coincide 

in the region 0 < v £ Ett. A consequence of this formula is that B is 

restricted to values between 0 and 1. 

Minimum Sidelobe Design Problem 

The pattern with the lowest sidelobes that has negative peaks for 

both cosine functions in the region 0 <_ v £ 2ir occurs for A = ^, as can 

be seen by sketching the functions. For A somewhat less than 1/2, the 

first negative sidelobe moves outside v=2Tr. When the first negative 

sidelobe continues to move beyond v=2n, the main beam encompasses the 

entire visible region (O £ v £ 2ÏÏ) which is not desirable for a directional 

antenna. On the other hand, when the element-spacing increases, the peaks 

move toward the origin. This decreases the beamwidth, but increases the 

sidelobe level since the peaks are closer together. 

If A=1/2, Equation 7b gives B as + 1/ Only the positive value 

is used since B must lie between 0 and 1. The element positions are 

d^ = A=l/2 wavelength 

dg = A+B = 0.5 + 0.707 = 1.207 wavelengths. 

If an array of k elements is considered, the array factor is 

^[cos(d^v) + cosCdgv)]. For the above element positions, the first 

negative lobe is -0.408$ and this is the largest sidelobe in the pattern, 

as the design procedure predicts. 

In the 5-element array, a +1 is introduced which does not occur in 

an array with an even number of elements. This decreases the magnitude 
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of the large negative lobe and may cause a positive lobe to be the largest 

sidelobe in the pattern. For the 5-element array, the same element 

positions (d^ = ̂  A, d^ = 1.207 X) produce an array pattern with a 

negative sidelobe level of -0.1271 and a half-power beamwidth of l8°. 

However, the largest sidelobe is 0.267, a positive lobe caused by the +1 

term. This causes a difficulty in design procedure, which must be con­

sidered, but it also lowers the sidelobe level of the ^-element array. 

The change from 0.4089 to 0.267 is quite significant. 

Instead of writing the displacement condition. Equation 7a, in terms 

of the first negative sidelobe, one cou].d write a restriction for the 

first positive sidelobe. This positive sidelobe occurs between v^ and 

Vj^ (see Fig. 2). The displacement equation for this lobe is 

2ïï - Bv^ = 2ïïB . (8a) 

and for v^ = 2n/(A+B), one has 

A = ̂  . (8b) 

The minimum value of A.that places the positive peaks of the two cosine 

functions in the visible region is 1. Then by Equation 8b, B=0.6l8. The 

element positions are 

d^ = A = 1 X 

dg = A+B = 1.618 A . 

Fig. 3 shows a sketch of cos(d^v) and cosfd^v) for the above values. 

The complete array pattern is shown in Fig. 4. The maximum sidelobe level 

is -0.402 and the half-power beamwidth is about 12°. For A=1 then, the 

largest sidelobe occurs in the negative region instead of the assumed 
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cos(l.6l8v) 

cos V 

1. OTT 

-1 

Fig. 3. Cosine functions for low sidelobes of a ^-element array 

1 

0 

.OTT 

•1 

Fig. k. Array pattern for lov sidelobes of a 5-element array 
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positive region. 

For low sidelobe values it is difficult to anticipate whether the 

first positive or first negative sidelobe will be the largest. The 

results shown here indicated that the best pattern was produced when the 

first negative sidelobe was assumed to be the greatest in the array with 

an odd number of elements. The lowest possible negative sidelobe level 

for a 5-element array is ^1-2-2) =0.6 which would occur if the negative 

peaks of the cosine functions coincided. Thus, the patterns with the 

large sidelobe levels will definitely be caused by positive peaks of the 

cosine functions. 

Of course, for the array with an even number of elements, this 

difficulty with the +1 term does not arise. The sidelobe largest in 

magnitude would always be the first negative lobe next to the main beam. 

It is worthwhile examining the array with an odd number of elements 

because the pattern is significantly improved with the addition of one ele­

ment . 

Comparing Figs. 3 and 4, one can see that a peak of the array pattern 

in Fig. 4 lies almost midway between two adjacent peaks of the functions 

sketched in Fig. 3. This provides a basis for designing an array with a 

prescribed sidelobe level. 
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ARRAY DESIGN 

Five-Element Arrays 

Five-element array design 

When the value of A increases, the peaks of the cosine functions move 

closer to the origin. During this process the sidelobes increase, but the 

beamwidth decreases. Many applications require a narrow beamwidth as well 

as a low sidelobe level. These requirements are contradictory and a 

compromise must be made. In the formulation used here it is difficult to 

write a meaningful expression for the beamwidth in terms of the sidelobe 

level. The simplest procedure is to design an array with a specified 

sidelobe level and then determine the beamwidth by calculating the antenna 

pattern. This presents no difficulty with a high-speed computer. 

The point where the maximum sidelobe occurs is represented as v^. 

As previously stated, this caxi be approximated as the midpoint between 

the two positive peaks v^ and Vj^. Thus let 

If the two cosine functions had the same period, this expression for v^ 

would be exact. The peak value for the sum of the equal period curves 

would be greater than the peak value for the sum of the unequal period 

curves since the point of intersection is lower in the unequal period 

case. Equation 9 would give v for a "worst case" situation. In the 
m 

previous example where d^ = 1 and dg = I.618, Equation 9 gives v^ as 

=  ( i s =  " ( r i i ï  -  ï '  

= 1.618 ïï 
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and the value of from a computer calculation of the pattern is 1.36 IT. 

The agreement is not exact, "but as the sidelohes are allowed to increase 

the approximation becomes more accurate. 

For a simple design procedure, there should he a convenient relation­

ship between the specified sidelobe level and one of the element positions. 

This can be obtained if the two cosine functions are approximated as being 

equal at the highest sidelobe location. At v=^.''^, cos(Av^) is greater than 

COS(A+B)V̂ , so COS(AV̂ ) + COS(A+B)V̂  is approximated as 2cos(Av^) for a 

worst case situation. The value of the sidelobe at v^ for the previous 

example is estimated as 

(̂l + 4 COS Av^) = j[l + 4 cos(l.6l8%)] = 0.4$ 

The computer-calculated pattern gives a maximum of 0.402. The actual 

value is seen to be a little less than the estimated value. 

In the design problem, the maximum sidelobe value of F^(v) is 

specified and the spacings d^ and d^ are to be determired. The relation­

ship between the given sidelobe level and an element position is 

= j[l + 4 cos(Av̂ )] 

5 F (v )-.l 
or COS(AV^) = ^ • . (lO) 

From Fig. 2 it can be seen that Av^ lies in the fourth quadrant for the 

case where the first positive sidelobe is the highest sidelobe. For 

convenience let 

Av̂  = 2-ÏÏ - yir 0 < 7 <  ̂

Substituting Equation 9 into the above expression gives 
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V. + V, 
A( % ) = ïï(2-y) 

B = ̂  • (11) 

Equations Sb and 11 completely specify the element positions when y is 

specified by the given sidelobe level. An example will illustrate the 

design procedure. 

Design example for a ^-element array 

It is given that a 5-element array is to have no sidelobe exceeding 

0.6. Determine the element spacings. 

By Equation 10, COS(AV^) = 0.5» Then AV^ = 2IT - ir/3 and y = 1/3. 

Equation 11 gives B = A/2 and Equation 8b becomes 

A - A^/4 
l-A/2 

The designed spacings are: 

d^ = A = 4/3 

d = A+B = k / 3  +  2/3=2 . 

The individual cosine functions are shown in Fig. 5 and a plot of F^(v) 

for this example appears in Fig. 6. The actual sidelobe level is 0.483 

and the half-power beamwidth is about 9^°. The sidelobe level is 

noticeably below the design level because of the worst case approximation 

made earlier. 

The highest sidelobe in this example occurred at v^ = 1.12 tt. The 

estimated value of v is 
m 
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COS — V 

COS 2v 

. OTT 

Fig. 5» Cosine functions for a designed sidelobe level of 0.6 for 
a 5-element array 

l.Oir 1.5TV 

—1 

Fig. 6. Array pattern for a designed sidelobe level of 0.6 for 
a 5-element array 
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The agreement between the two values is quite acceptable. 

A 5-element uniformly spaced array with a beamwidth of 9^° would have 

a grating lobe at 0 = 63̂ °. Placing the elements nonuniformly distributes 

the power that would be transmitted or received in the grating lobe region 

throughout the entire lobe region. This necessarily will increase the 

level of the sidelobes. However, in many situations this is more desirable 

than the grating lobes. 

Seven-Element Arrays 

The procedure used in the design of -̂element arrays can easily be 

applied to 7-element arrays. The array factor is expressed as 

F^(v) = y(l + 2 cos d̂ v + 2 cos d̂ v + 2 cos d̂ v) (12) 

Let d^=A, d2=A+B, and d^^A+B+C with A, B, and C greater than zero. A 

typical plot of the cosine functions is shown in Fig. T. A displacement 

restriction is placed on the three functions so that no sidelobe is greater 

than the first large sidelobe. For the very low sidelobe case, the first 

negative peak is the source of the greatest lobe in the T-element array. 

In addition to the restriction placed upon A and B as in the 5-element 

array, C is constrained as follows; 

2 n  -  T  C  =  2  C .  

Replacing v̂  by Tr/(A+B+C) gives 

~ A+B+C ~ 

- -' 4# • 
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The two displacement relationships for the T-element array then are 

= #Î5T • 

Minimum sidelohes 

The minimum sidelobe level that is still regulated "by the theory 

occurs near A=0..8, as determined by trial and error. For smaller values 

of A, two negative lobes of cosfd̂ v) occur before one negative peak of 

cos(d^v). Under these circumstances the maximum sidelobe does not occur 

where it is predicted. Lower sidelobes can be obtained for A less than 

0.8, but the maximum sidelobe usually occurs near the end of the pattern. 

For A=0.8, Equations 13 give B=0.95T and 0=0.827' The element positions 

are 

d̂  = A = 0.8 A 

dg = A+B = 1.557 X 

d̂  = A+B+C = 2.384 A . 

A plot of the array factor is shown in Fig. 8. The first negative 

sidelobe is -0.2272 and occurs at V̂ =0.520ÏÏ. A higher sidelobe equal to 

-0.2496 occurs at v=2ir . 

Seven-element array design 

There are two equations in three unknowns for- the positions in the 

7-element array. An additional equation is available that relates the 

specified sidelobe level to the element positions. This equation is 

7 r - 1 
r = cos d^v + cos d̂ v + cos d_v 
d 1 m 2 m 3 m 

(14) 
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cos(A+B+C)v cos Av 

2.OTT 

Fig. 7. Cosine functions for an arbitrary 7-element array 

.OTT 

Fig. 8. 7-element pattern for low sidelobes 
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The expression is not very useful in this form. Good results can "be 

obtained by simplifying the equation vith some approximations. These are 

Tm = ̂ 2 ' 

cos d̂ v = cos d„v 
1 m j m 

cos d_v = -1 . 
c. m 

With these approximations Equation l4 reduces to 

7 FrfVn) - 1 
2 = - 1 + 2 cos d̂ v̂  

7 F (vj - 1 
or ^ = cos d̂ Vg = cos Av̂  • (l5) 

AVg will lie in the second quadrant and can be expressed as 

1 
AVg = Tr-yïï. 0 < y < — 

From this, an expression relating A and B in terms of y can now be found. 

A ̂  = n(i-y) 

B = . Ci6) 

Equations 13 and l6 completely determine the element positions when 

F^(v^) is specified. 

Design example for a 7-element array 

Determine the element spacings of a 7-element array for a maximum 

sidelobe level of 0.6. 

For Equation 15, cos(AVg) = -0.8 and y = 0.2. By Equation l6, 

B = 0.25A. Using this value for B with Equations 13 one gets A = 3.6, 

B = 0.9, and C = 0.915. The element positions are 

d^ =. A = 3.6 A 
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d = A+B = 4.5 A 

d = A+B+C = $.415 A . 

The estimated value of v is 
m 

From the calculation of the antenna pattern, v̂  = 0.220 ir, the side-

lobe level is 0,605, and the half-power beamwidth is 3.5°. The predicted 

values of v and sidelobe value at v agree quite well with the pattern 
m m 

results. However, a positive maximum of 0.6l2 occurs at v = 0.43 TT and 

a second positive maximum of 0.637 occurs at v = 1.79 ir. This is another 

case where the +1 term in the array factor has caused a positive lobe to 

dominate the first negative sidelobe. However, the results are quite 

satisfactory. A plot of F̂ (v) appears in Fig. 9- A uniformly spaced array 

with a beamwidth of 3-5° would have 2 grating lobes in the visible region, 

one at 0 = 2899 and a second at 6 = 72°. 

1 

0 ' " V " " — — ! -
\ / 0. 5IT 1. GIT \ / 
V 

1.5fT 2.0% 

V 
V 

-1 

Fig. 9- Array pattern for a 7-element array with a designed sidelobe 
level of 0.6 
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Nine-Element Arrays 

The extension of the displacement relationships to larger arrays is 

not difficult. For 2N+1 elements there are K-1 equations in N unknowns-

An additional equation comes from, the sidelohe specification. As the 

number of elements in the array increases, it becomes more and more 

difficult to use the sidelobe specification analytically. An example 

design problem will be worked for the 9-element array and there will then 

be a discussion of larger arrays. 

The element positions for the 9-element array are denoted as d̂ =A, 

dg=A+B, d2=A+B+C, and d^=A+B+C+D'where A, B, C, and D are greater than 

zero. For the first negative peak as the largest sidelobe, the displace­

ment relations are 

Minimum sidelobes 

For the 9-element array, the smallest predictable lobes occur for A 

near 0.800, as determined by trial and error. Considering A=0.800, the 

remaining positions can be found from Equations 17a, 17b, and 17c 

respectively. The element positions are 

- B(2B-1) 
2(1-B) (17a) 

(17b) 

-B- . m (17c) 

d̂  = A = 0.800 

dg = A+B = 1.557 

d = A+B+C = 2.384 

dî  = A+B+C+D = 3.250 . 
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The array function is plotted in Fig. 10. The first negative sidelohe is 

-0.2039 and occurs at v^=0.40n. The half-power beamwidth is 7° 10' . 

The largest sidelohe is 0.2249 which is due to the +1 term in the array 

f a c t o r .  .  .  . . .  

l.Oïï 

-1--

Fig. 10. 9-element pattern for low sidelobes 

Design example for a 9-element array 

If the maximum value of the sidelobes, F̂ (v̂ ) is specified, the 

requirement that must be satisfied is 

9 - 1 
= cos d., V + cos d_v + cos d_v + cos d, v . (l8) 

d 1 m 2m 3m 4m 

It is desirable to find a simple relation between F_(v ), v and one 
y m m 

of the d's so that Equations 17 cein be used to find the remaining 

distances. For this purpose, let 
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cos d̂ v = cos dv V 
1 m 4 m 

cos d_v = cos d_v 
2 m 3 m 

Then 

9 F (v_^) - 1 
= COS d,v + cos d„v r UU5 u. V T UU5 u_v 

4 • 1 m 2 m 

This is simpler but still is not convenient since two cosine functions are 

on the right hand side of the equation. To reduce this to one cosine 

function, set cosfd^v^) = -1 since it is nearly equal to this value. With 

these approximations. Equation 18 is reduced to 

9 - 1 

! Vm - ̂  • 

9 F„(v__̂ ) + 3 
or jj = cos Av̂  . (19) 

A 9-element array will now be designed so that no sidelobe exceeds 

a normalized value of 0.5. 

The first step is to find Av^ from Equation 19- Since ~ -0.$, 

the value of cos(Av ) is -0.375* Av = 0.6241 tt which is in the second 
m m 

quadrant. To relate to the parameters A, B, C, and D, let lie 

midway between cosCd^v^) and cosCd^v^). That is, let 

V = + _JL_) 
m 2̂ A+B A+B+C:' 

Equate this to = 0.62^1 u/A as was found from the sidelobe restriction. 

0.6241 _ 1 \ 
A ~ 2̂ A+B A+B+C' * 

This simplifies to 

1.2U82 (A+B)(A+B+C) = A(A+B+C) + A(A+B) . (20) 
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From Equation 17b one can write 

A+B+C . + C . 2(I:CT • (21) 

Equations 1Tb and 20 are substituted into Equation 21 and then reduced to 

 ̂= 

Next, substitute this into Equation 1Tb. The relationship between A and 

B is 

0.6026 A - 0.124 . 
 ̂~ A + 0.624 ^ • 

When this is placed into Equation ITa, the resultant equation in A is 

Â  - 1.2413 A^ - 1.48T0 A - 0.3632 = 0 . 

The only real root of this equation is A = 2.052. The remaining spacing 

parameters are easily found from Equations IT. The element positions are: 

d^ = A = 2.052 

dg = A+B = 2.9052 

d = A+B+C = 3.T886 

d|̂  = A+B+C+D = 4.6923 . 

The estimated value of v is 
m 

"̂ m ~ 2̂ A+B A+B+Ĉ  ' 

The array factor is plotted in Fig. 11. The actual value of v is 0.28 m 
' m 

and the sidelobe level at this point is 0.466. These values compare very 

favorably with the estimated values. While cosCd̂ v̂ ) is -0.833 rather 

than the approximation of -1 made earlier to simplify the transcendental 

equation, the close comparison between the designed value and the actual 
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1.0 

0.5 

0 

2. OIT l.OlT 

-0.5 

—1.0 

Pig. 11. Array pattern for a 9-element array with a designed 
sidelobe level of 0.5 
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value justifies the procedure. The half-power beamwidth is about 4^° . 

A uniformly spaced array with this beamwidth would have a grating lobe 

at 50°21'. 

It is clear from these results that one of the advantages of spacing 

the elements nonuniformly is to eliminate the grating lobes that would 

appear in a uniformly spaced array. The spacing between adjacent elements 

has been less than one wavelength (except for d^) which makes it difficult 

to compare the arrays presented here with the 9-element arrays calculated 

by Lo and Lee [42]. Their arrays had an average spacing of 2.375 wave­

lengths over an aperture of 19-5 wavelengths. The sidelobes are higher 

than those produced here because they spread two grating lobes over the 

entire sidelobe region and only one grating lobe was dispersed here. 

The procedure demonstrated in the 5-, 7-> and 9-element array designs 

should give a basic understanding of the cosine displacement method of 

array design. A summary of the design method follows. 

Summary of Design Procedure 

For a specified sidelobe level, the first step is to relate this 

numerical value to an element position. Various procedures were shown 

for doing this in the 5-, T-, and 9-element array examples. All procedures 

had the objective of reducing the number of cosine functions in the 

transcendental equation to only one in the region of the maximum sidelobe. 

The argument of the resulting cosine function contained only the first 

element position. 

The displacement equations, used with the equation containing the 

sidelobe specification, are sufficient to completely specify the desired 
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element positions. The first position, d^, is used to solve for d^, d^ 

used to find d̂ , and d^ found by using d^ Each expression for an 

element -position is a quadratic equation and can be solved very simply. 

One root of the equation produces a negative value for d -d which has 
n n—1 

been prohibited by previous constraints. Thus, there is no ambiguity in 

the element positions. 

The beamwidth is not calculated during the design procedure, but is 

found from the synthesized array pattern. If this beamwidth is not narrow 

enough to meet the design requirement, the sidelobe level must be allowed 

to increase, and then new element positions calculated. 
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POSSIBLE EXTENSIONS OF THE COSINE DISPLACEMENT THEORY 

Spacings Larger than One Wavelength 

If the individual elements in the array are nonisotropic, the element 

positions can be increased beyond one wavelength. Consider an array of 

elements, each with a beamwidth of 5° (8=2̂ °), and low sidelobe levels 

beyond the main beam. A grating lobe could exist in the isotropic element 

array at 0 = 5° and not cause any change in the sidelobe level of the 

nonisotropic element array. If the distance "between adjacent cosine 

peaks at 0 = 10° (ir/l8 radians) is the same as the distance between 

adjacent peais at the first negative sidelobe, the displacement equation 

is 

^ ̂  

which reduces to 

_ B(B-18) 

 ̂- 36-B 

B can now range from 18 wavelengths to 36 wavelengths, which is very 

useful from a practical standpoint. An element with a beamwidth of 5° is 

probably larger than one wavelength and a large spacing is required for 

physical realizability of the array. Also, mutual coupling is reduced. 

However, an array designed under these conditions is almost certain to 

have a grating lobe in the neighborhood of 10°, and one must be assured 

that this is acceptable when undertaking this design procedure. 

Arrays Larger than Nine Elements 

From the difficulty encountered in reducing the transcendental equa­

tion l8 to a workable form, one can imagine that for larger arrays the 
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task is even worse. Since there is only one equation lacking in the set 

of displacement equations, it becomes questionable whether the work 

involved in reducing the transcendental equation to a useful form is 

worth the effort. One of the objectives of the design procedure presented 

here is to keep the method as simple as possible. 

For larger arrays it may be much easier to use a graphical technique 

than an analytic technique for obtaining the additional information 

required to solve the displacement equations for the element positions. 

Array patterns were calculated for 4 17-element arrays to see if a plot of 

element-position d̂  (or A) vs. sidelobe level would provide the information 

needed in a simple manner. This plot is shown in Fig. 12, and a plot of 

beamwidth vs. sidelobe level is shown in Fig. 13. The solid curve shows 

the highest negative lobe, and the dotted curve the highest sidelobe level 

in the entire array pattern. 

The relationship between A and the sidelobe level is very nearly 

linear, and it appears that this could be used very nicely for array 

design. To test this hypothesis, a sidelobe level of 0.35 was chosen for 

a design. Using the linear relationship, A was found to be 2.025. The 

remaining positions are easily found from the displacement relations. 

The calculated sidelobe level for this array is 0.358 and the beam-

width is 2°hk'. These values are very close to those obtained from the 

graphs. This appears to be a very simple and effective method for array 

designs. Ho further graphical work has been completed and it is not known 

whether the linear relationship between position d̂  and the sidelobe level 

extends to larger arrays. 
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Fig. 12. Element position and sidelobe level relationship for a 
IT-element array 
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0.2 0.3 0.4 
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Fig. 13. Half-power beamwidth and sidelobe level relationship for 
a IT-element array 
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SUMMARY AND CONCLUSIONS 

Many techniques have "been developed f o r  analyzing and synthesizing 

nonuniformly spaced arrays. The sidelobe levels in many of the designs 

are quite low near the center of the array pattern, but increase greatly 

near the outer regions. Procedures that have been developed to give a 

rather constant sidelobe level have a higher overall level than the region 

between grating lobes of uniformly spaced arrays. This higher level is 

expected since energy in the grating lobes has been dispersed over the 

entire array pattern. The techniques are frequently difficult to apply 

and the results often do not justify the time spent in the design. 

The technique presented here is very easy to use for rapid effective 

designs of small or medium sized nonuniformly spaced arrays. No 

sophisticated computation facilities are required to obtain the element 

positions and the results appear to be excellent. If more-optimum arrays 

are desired, this method provides good insight on pattern behavior as a 

function of-element spacing and can serve as a starting point for computer 

solutions. The synthesized patterns were shown to be better than those 

of uniformly spaced arrays that contained grating lobes. 

The design method is easily extended to arrays with nonisotropic 

radiators. The element spacing increases for these designs which allows 

greater freedom than small spacings for physical construction of the 

array. 

Preliminary calculations have shown that it may be possible to apply 

graphical design techniques to arrays in the intermediate size category 

of 20 or 30 elements. A graph could be made easily ajad quickly that 



www.manaraa.com

58 

contained information of several array designs for a given number of 

elements. The specifications taken from the graph can be used to con­

veniently obtain the final design. Several trials are often necessary 

in array design, and with a simple design method very little additional 

effort is expended in making a graph. 
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